Low Level Features for Quality Assessment of Facial Images
نویسندگان
چکیده
An automated system that provides feedback about aesthetic quality of facial pictures could be of great interest for editing or selecting photos. Although image aesthetic quality assessment is a challenging task that requires understanding of subjective notions, the proposed work shows that facial image quality can be estimated by using low-level features only. This paper provides a method that can predict aesthetic quality scores of facial images. 15 features that depict technical aspects of images such as contrast, sharpness or colorfulness are computed on different image regions (face, eyes, mouth) and a machine learning algorithm is used to perform classification and scoring. Relevant features and facial image areas are selected by a feature ranking technique, increasing both classification and regression performance. Results are compared with recent works, and it is shown that by using the proposed low-level feature set, the best state of the art results are obtained.
منابع مشابه
Face Quality Assessment for Face Verification in Video
Performance of biometric systems depends on quality of acquired biometric samples. Low sample quality is the main reason for matching errors in biometric systems and may be the principal weakness of some implementations. Therefore, when a biometric system obtains a sequence of person images from a surveillance camera, the quality of the different face images has to be evaluated before performin...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملA Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor
The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کامل